博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
DBSCAN(Density-based spatial clustering of applications with noise)
阅读量:6303 次
发布时间:2019-06-22

本文共 1997 字,大约阅读时间需要 6 分钟。

Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander and Xiaowei Xu in 1996.[1] It is a density-based clustering algorithm: given a set of points in some space, it groups together points that are closely packed together (points with many nearby neighbors), marking as outliers points that lie alone in low-density regions (whose nearest neighbors are too far away). DBSCAN is one of the most common clustering algorithms and also most cited in scientific literature.[2]

In 2014, the algorithm was awarded the test of time award (an award given to algorithms which have received substantial attention in theory and practice) at the leading data mining conference, KDD.[3]

Contents

1 Preliminary
2 Algorithm
3 Complexity
4 Advantages
5 Disadvantages
6 Parameter estimation
7 Extensions
8 Availability
9 See also
10 Notes
11 References
11.1 Further readin

Preliminary

Consider a set of points in some space to be clustered. For the purpose of DBSCAN clustering, the points are classified as core points, (density-)reachable points and outliers, as follows:

A point p is a core point if at least minPts points are within distance ε(ε is the maximum radius of the neighborhood from p) of it (including p). Those points are said to be directly reachable from p. By definition, no points are directly reachable from a non-core point.

A point q is reachable from p if there is a path p1, ..., pn with p1 = p and pn = q, where each pi+1 is directly reachable from pi (all the points on the path must be core points, with the possible exception of q).
All points not reachable from any other point are outliers.
Now if p is a core point, then it forms a cluster together with all points (core or non-core) that are reachable from it. Each cluster contains at least one core point; non-core points can be part of a cluster, but they form its "edge", since they cannot be used to reach more points.

wiki:

转载地址:http://lzfxa.baihongyu.com/

你可能感兴趣的文章
iOS 学习资料汇总
查看>>
centos7 yum安装jdk
查看>>
Bluedroid与BluZ,蓝牙测试方法的变动(基于bludroid和BlueZ的对比)
查看>>
接口和抽象类有什么区别
查看>>
Linux 下添加用户,修改权限
查看>>
请问view controller scene,该如何删除
查看>>
bootstrap新闻模块样式模板
查看>>
zzzzw_在线考试系统①准备篇
查看>>
App Store 审核被拒的23个理由
查看>>
剑指offer第二版-1.赋值运算符函数
查看>>
javascript 对象
查看>>
Android学习笔记——文件路径(/mnt/sdcard/...)、Uri(content://media/external/...)学习
查看>>
Echart:前端很好的数据图表展现工具+demo
查看>>
CATransform3D iOS动画特效详解
查看>>
Linux VNC黑屏(转)
查看>>
Java反射简介
查看>>
react脚手架应用以及iview安装
查看>>
shell学习之用户管理和文件属性
查看>>
day8--socket网络编程进阶
查看>>
node mysql模块写入中文字符时的乱码问题
查看>>